*	
Exercice 1	- Voir correction —
Exercice 1	VOII COLLECTION

Soit E un espace vectoriel, soient F et G deux sous espaces vectoriels de E et soient $\mathcal{F} = (f_1, f_2, \dots, f_p)$ une base de F et $\mathcal{G} = (g_1, g_2, \dots, g_r)$ une base de G.

Montrer que F et G sont supplémentaires dans E si et seulement si $(f_1, f_2, \ldots, f_p, g_1, g_2, \ldots, g_r)$ est une base de E.

Exercice 2 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel de dimension finie et p un projecteur de E. on pose $q = \mathrm{Id} - p$.

- 1) Montrer que q est un projecteur.
- 2) Montrer que $E = \text{Ker}(p) \oplus \text{Ker}(q)$.
- 3) Montrer que Ker(p) = Im(q) et Ker(q) = Im(p).

Exercice 3 — Voir correction —

Montrer dans chaque cas que F et G sont supplémentaires dans E:

- a) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3; x + y z = 0\}$ et G = Vect((1, 2, -1)).
- b) $E = \mathbb{R}_2[X], F = \{P \in \mathbb{R}_2[X], P(0) = P(1)\} \text{ et } G = \text{Vect } (X^2).$
- c) $E = \mathcal{M}_n(\mathbb{R})$, $F = \mathcal{S}_n(\mathbb{R})$, $G = \mathcal{A}_n(\mathbb{R} \text{ (où } \mathcal{S}_n(\mathbb{R}) \text{ et } \mathcal{A}_n(\mathbb{R}) \text{ sont respectivement l'ensemble des matrices symétriques et antisymétriques d'ordre <math>n$ à coefficients réels).
- d) $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, $F = \mathcal{P}(\mathbb{R}, \mathbb{R})$ et $G = \mathcal{I}(\mathbb{R}, \mathbb{R})$ (où $\mathcal{F}(\mathbb{R}, \mathbb{R})$, $F = \mathcal{P}(\mathbb{R}, \mathbb{R})$ et $G = \mathcal{I}(\mathbb{R}, \mathbb{R})$ sont respectivement : l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} , l'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} , et l'ensemble des fonctions impaires de \mathbb{R} dans \mathbb{R}).

Exercice 4 — Voir correction —

On se place dans l'espace vectoriel $E = \mathbb{R}^3$

- 1) Montrer que $E_1 = \{(a, a, a) \mid a \in \mathbb{R}\} = \text{Vect}((1, 1, 1))$ et $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ sont supplémentaires dans \mathbb{R}^3
- 2) On considère la projection sur E_2 parallèlement à E_1 , c'est à dire le projecteur $p \in \mathcal{L}(\mathbb{R}^3)$ tel que $\mathrm{Im}(p) = E_2$ et $\mathrm{Ker}(p) = E_1$. Déterminer la matrice A de p dans la base canonique de \mathbb{R}^3 .
- 3) Montrer qu'il existe une matrice inversible $P \in \mathcal{M}_3(\mathbb{R})$ et son inverse P^{-1} telles que $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Exercice 5 — Voir correction —

Soit $a \in \mathbb{R}$. On considère la matrice $A = \begin{pmatrix} a & -a \\ 1 & -1 \end{pmatrix}$

- 1) Pour quelle(s) valeur(s) de a la matrice A est-elle la matrice d'un projecteur?
- 2) Déterminer alors les sous espaces caractéristiques Ker(A) et Im(A) de ce projecteur.
- 3) Déterminer une matrice inversible $P \in \mathcal{M}_2(\mathbb{R})$ et son inverse P^{-1} telles que $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

* * *
Exercice 6 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel de dimension finie, et soit $u \in \mathcal{L}(E)$.

- 1) Montrer qu'il y a équivalence entre les trois propositions suivantes :
 - (i) $\operatorname{Ker}(u) = \operatorname{Ker}(u^2)$
 - (ii) $\operatorname{Im}(u) = \operatorname{Im}(u^2)$
 - (iii) $E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$

Indication: on pourra montrer $(i) \Leftrightarrow (ii), (i) \Rightarrow (iii)$ et $(iii) \Rightarrow (ii)$

2) Un endomorphisme vérifiant les propositions ci-dessus est-il nécessairement un projecteur?

Exercice 7 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel de dimension finie n et soient f et g deux endomorphismes de E.

- 1) Montrer que $rg(f+g) \le rg(f) + rg(g)$.
- 2) Montrer que $\operatorname{rg}(f+g)=\operatorname{rg}(f)+\operatorname{rg}(g)$ si et seulement si $\operatorname{Im} f\cap \operatorname{Im} g=\{0\}$ et $\operatorname{Ker} f+\operatorname{Ker} g=E$

Soit $E = \mathbb{R}_n[X]$ avec $n \geq 2$.

- 1) $F = \{P \in \mathbb{R}_n[X] \mid P(1) = 0\}$. Vérifier que F est un sous-espace vectoriel strict de E puis déterminer un supplémentaire de F dans E.
- 2) Même question avec $F = \{P \in \mathbb{R}_n[X] \mid P(1) = P(2) = 0.$
- 3) Généraliser à $F = \{P \in \mathbb{R}_n[X] \mid P(x_1) = P(x_2) = \dots = P(x_k) = 0\}$ avec $1 \le k \le n$ et $x_1 < x_2 < \dots < x_k$ des réels distincts.

Soit E un \mathbb{R} -espace vectoriel, F un sous-espace vectoriel de E, et q un projecteur de E. Montrer que F est stable par q si et seulement si $F = (F \cap \operatorname{Ker}(q)) \oplus (F \cap \operatorname{Im}(q))$.

* * *
Exercice 10 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel, p un projecteur de E et u un endomorphisme de E. Montrer que p et u commutent si et seulement si Ker(p) et Im(p) sont stables par u.

* * *

Exercice 11 ————— Voir correction —

Soit $E = \mathcal{C}([0,1],R)$ l'ensemble des fonctions continues de [0,1] dans \mathbb{R} . On admet que E est un \mathbb{R} -espace vectoriel (de dimension infinie). Soit $F = \left\{ f \in E \,\middle|\, \int_0^1 f(t) \,\mathrm{d}t = 0 \right\}$ et $G = \left\{ f \in E \,\middle|\, f \text{ est constante} \right\}$.

- 1) Montrer que F et G sont supplémentaires dans E.
- 2) Soit p la projection sur F parallèlement à G. Que vaut p(f) pour $f \in E$?

Exercice 12 — Voir correction —

Soient E un \mathbb{R} -espace vectoriel de dimension finie et $p,q\in\mathcal{L}(E)$ deux projecteurs.

- 1) Montrer que p+q est un projecteur si et seulement si $p\circ q=q\circ p=0$
- 2) Montrer que si p+q est un projecteur, $\operatorname{Im}(p+q)=\operatorname{Im}(p)\oplus\operatorname{Im}(q)$ et $\operatorname{Ker}(p+q)=\operatorname{Ker}(p)\cap\operatorname{Ker}(q)$

Soient E et F deux \mathbb{R} -espaces vectoriels de dimension finie et soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, E)$ tels que $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

- 1) Montrer que Ker(f) et Im(g) sont en somme directe.
- 2) Montrer que Ker(f) et Im(g) sont supplémentaires dans E.
- 3) On pose $E = \mathbb{R}_n[x]$, $F = \mathbb{R}_{n-1}[x]$. On pose

 $f: \mathbb{R}_n[x] \longrightarrow \mathbb{R}_{n-1}[x]$ et $g: \mathbb{R}_{n-1}[x] \longrightarrow \mathbb{R}_n[x]$ $P \longmapsto P'$ $(x \mapsto \int_0^x P(t) dt)$

Vérifier que f et q satisfont les conditions de l'énoncé.

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

1) Soit $p \in \mathcal{L}(E)$ un projecteur. Montrer que $\operatorname{rg}(p) = \operatorname{tr}(p)$.

2) Montrer par récurrence que si F_1, F_2, \ldots, F_n est une famille de sous espaces vectoriels de E on a

$$\dim(F_1 + F_2 + \dots + F_n) \le \dim(F_1) + \dim(F_2) + \dots + \dim(F_n)$$

avec égalité si et seulement si F_1, F_2, \dots, F_n sont en somme directe.

3) Soit p_1, p_2, \ldots, p_n une famille de projecteurs. Montrer que $p = p_1 + p_2 + \cdots + p_n$ est un projecteur si et seulement si $\forall (i,j) \in [1,n]^2, i \neq j, \ p_i \circ p_j = 0.$

Indication: commencer par montrer que si p est un projecteur alors $\operatorname{Im}(p) = \operatorname{Im}(p_1) \oplus \operatorname{Im}(p_2) \oplus \cdots \oplus \operatorname{Im}(p_n)$.

Le coin des Khûbes

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer que les trois assertions suivantes sont équivalentes :

- (i) Ker(u) = Im(u)
- (ii) $u^2 = 0$ et $\dim(\operatorname{Ker}(u)) = \dim(\operatorname{Im}(u)) = \dim(E)/2$
- (iii) $u^2 = 0$ et il existe un endomorphisme v tel que $u \circ v + v \circ u = \mathrm{Id}_E$.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice. On dit qu'une matrice $A' \in \mathcal{M}_n(\mathbb{R})$ est un pseudo-inverse de A lorsque les trois égalités suivantes sont satisfaites :

$$AA' = A'A$$
 (i) , $A = AA'A$ (ii) , $A' = A'AA'$ (iii)

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ et a l'endomorphisme de \mathbb{R}^n canoniquement associé.

- 1) Supposons que A admette un pseudo-inverse. Montrer qu'alors $rg(a) = rg(a^2)$.
- 2) Réciproquement, supposons dans cette question que $rg(a) = rg(a^2)$. On note r le rang de a.
 - a) Montrer que $\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$
 - b) Montrer qu'il existe $B \in \mathcal{M}_r(\mathbb{R})$ avec B inversible et $P \in \mathcal{M}_n(\mathbb{R})$ inversible telles que $A = P \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$
 - c) Montrer que A admet au moins un pseudo-inverse.
- 3) On suppose que A admet un pseudo inverse A' et on note a' l'endomorphisme canoniquement associé à A'. On garde les matrices B et P de la question précédente.
 - a) Montrer que Ker(a) et Im(a) sont stables par a' et montrer qu'il existe $D \in \mathcal{M}_r(\mathbb{R})$ telle que $A' = P\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$.
 - b) Montrer que aa' est un projecteur dont on précisera le noyau et l'image en fonction de ceux de a. Préciser ce que vaut $P^{-1}(AA')P$.
 - c) Montrer que A admet au plus un pseudo-inverse.

(ENS 2025) Soit E un espace vectoriel de dimension finie. Soient F, G des sous-espaces vectoriels de E. Pour simplifier les notations on node d_H la dimension d'un sous-espace vectoriel H de E.

1) En considérant l'application

$$\begin{array}{cccc} u & : & F \times G & \to & F + G \\ & (x,y) & \mapsto & x + y \end{array}$$

montrer que $d_{F+G} + d_{F \cap G} = d_F + d_G$. On pourra admettre que $\dim(F \times G) = \dim(F) + \dim(G)$.

- 2) Montrer que $d_{F+G}^2 + d_{F\cap G}^2 d_F^2 d_G^2 = 2(d_G d_{F\cap G})(d_F d_{F\cap G}).$
- 3) Montrer que $d_{F+G}^2 + d_{F\cap G}^2 \ge d_F^2 + d_G^2$ et étudier les cas d'égalité.
- 4) Soit $\alpha > 1$ un réel. Montrer que $d_{F+G}^{\alpha} + d_{F\cap G}^{\alpha} \geqslant d_F^{\alpha} + d_G^{\alpha}$ et étudier le cas d'égalité. Indication : on pourra considérer la fonction $f(x) = (x + d_G - d_{F\cap G})^{\alpha} + d_{F\cap G}^{\alpha} - x^{\alpha} - d_G^{\alpha}$.

Correction des exercice

Correction de l'exercice 1 : Supposons que $E = F \oplus G$. Alors $\dim(E) = \dim(F) + \dim(G)$ donc $\dim(E) = p + r$. Montrons que la famille $(f_1, f_2, \dots, f_p, g_1, g_2, \dots, g_r)$ est une famille génératrice de E: pour tout vecteur $u \in E$, il existe $f \in F$ et $g \in G$ tel que u = f + g car E = F + G. Puisque \mathcal{F} est une base de F et \mathcal{G} est une base de G, il existe $\lambda_1, \lambda_2, \ldots, \lambda_p$ et $\mu_1, \mu_2, \dots, \mu_r$ des réels tels que $f = \lambda_1 \cdot f_1 + \lambda_2 \cdot f_2 + \dots + \lambda_p \cdot f_p$ et $g = \mu_1 \cdot g_1 + \mu_2 \cdot g_2 + \dots + \mu_r \cdot g_r$. Ainsi, $u = \sum_{i=1}^p \lambda_i f_i + \sum_{j=1}^r \mu_j g_j$. La famille $(f_1, f_2, \dots, f_p, g_1, g_2, \dots, g_p)$ est bien une famille génératrice de E, et puisque son nombre d'éléments est égal à la dimension de E c'est donc une base de E.

Réciproquement, supposons que $(f_1, f_2, \dots, f_p, g_1, g_2, \dots, g_r)$ soit une base de E.

Montrons que E = F + G: Soit $u \in E$ un vecteur, il existe $\lambda_1, \lambda_2, \dots, \lambda_p, \mu_1, \mu_2, \dots \mu_r$ tels que $u = \sum_{i=1}^p \lambda_i \cdot f_i +_u nderbrace \sum_{j=1}^r \mu_j g_j$

donc $u \in F + G$. Ainsi, $E \subset F + G$ donc E = F + G car $F + G \subset E$.

Montrons que $F \cap G = \{0\}$: Soit $u \in F \cap G$. Alors, $u \in F$ donc il existe $\lambda_1 \lambda_2, \dots, \lambda_p$ des réels tel que $u = \sum_{i=1}^p \lambda_i f_i$, et $u \in G$ donc il existe des réels $\mu_1, \mu_2, \dots, \mu_r$ tels que $u = \sum_{j=1}^r \mu_j g_j$. Ainsi, $0 = u - u = \lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_p f_p - \mu_1 g_1 - \dots + \lambda_p f_p - \mu_1 g_1$ $\mu_2 g_2 - \dots - \mu_r g_r = 0$. Or $(f_1, f_2, \dots, f_p, g_1, g_2, \dots, g_r)$ est une base de E donc une famille libre, ainsi $\lambda_1 = \lambda_2 = \dots = \lambda_p = 0$ $\mu_1 = \mu_2 = \cdots = \mu_r = 0$. Finalement u = 0, donc on a bien $F \cap G = \{0\}$. On en conclut que $E = F \oplus G$.

On a montré que $E = F \oplus G$ si et seulement si $(f_1, f_2, \dots, f_p, g_1, g_2, \dots, g_r)$ est une base de E.

Remarque : on peut au montrer que $F \cap G = \{0\}$ en analysant les dimensions : puisqu'on a montré que F + G = E, on en déduit que $\dim(F+G) = \dim(E) = p+r$, donc d'après l'égalité $\dim(F+G) = \dim(F) + \dim(G) - \dim(F\cap G)$ on en déduit que $p + r = p + r - \dim(F \cap G)$ donc que $\dim(F \cap G) = 0$, et donc $F \cap G = \{0\}$.

Correction de l'exercice 2 :

- 1) $q^2 = (\operatorname{Id} p)^2 = \operatorname{Id} 2p + p^2 = \operatorname{Id} 2p + p = \operatorname{Id} p$ car Id et p commutent. Ainsi $q^2 = q$ donc q est un projecteur.
- 2) Soit $x \in \text{Ker}(p) \cap \text{Ker}(q)$. Alors p(x) = 0 et q(x) = x p(x) = 0 d'où x = 0. Ainsi $\text{Ker}(p) \cap \text{Ker}(q) = \{0\}$ donc $\text{Ker}(p) \cap \text{Ker}(p) = \{0\}$ donc $\text{Ker}(p) = \{0\}$ donc $\text{Ker}(p) = \{0\}$ donc Ker(p)et Ker(q) sont en somme directe.
 - De plus, pour tout $x \in E$, x = x p(x) + p(x). Or $p(x p(x)) = p(x) p^2(x) = p(x) p(x) = 0$ car p est un projecteur, et $q(p(x)) = p(x) - p^2(x) = p(x) - p(x) = 0$. On a donc $x - p(x) \in \text{Ker}(p)$ et $p(x) \in \text{Ker}(q)$ donc $x \in \text{Ker}(p) + \text{Ker}(q)$. On en conclut que E = Ker(p) + Ker(q) donc finalement que $E = \text{Ker}(p) \oplus \text{Ker}(q)$.
- 3) Soit $x \in \text{Im}(q)$, alors il existe $y \in E$ tel que x = y p(y), donc $p(x) = p(y) p^2(y) = 0$ et donc $x \in \text{Ker}(q)$. On a donc $\operatorname{Im}(q) \subset \operatorname{Ker}(p)$.

En notant $\dim(E) = n$ et en appliquant la formule de Grassmann au résultat de la question précédente on obtient :

$$n = \dim(E) = \dim(\operatorname{Ker}(p)) + \dim(\operatorname{Ker}(q)) - \underbrace{\dim(\operatorname{Ker}(p) \cap \operatorname{Ker}(q))}_{=0} = \dim(\operatorname{Ker}(p)) + \dim(\operatorname{Ker}(q))$$

d'où $\dim(\operatorname{Ker}(p)) = n - \dim(\operatorname{Ker}(q)) = \operatorname{rg}(q)$. On en conclut que $\operatorname{Im}(q) = \operatorname{Ker}(p)$ par inclusion et égalité des dimensions. De la même façon on a $\dim(\operatorname{Ker}(q)) = n - \dim(\operatorname{Ker}(p)) = \operatorname{rg}(p)$. Pour tout $x \in \operatorname{Im}(p)$, il existe $y \in E$ tel que x = p(y)donc $q(x) = p(y) - p^2(y) = 0$ et ainsi $x \in \text{Ker}(q)$, ce qui prouve que $\text{Im}(p) \subset \text{Ker}(q)$ et permet donc de conclure que Im(p) = Ker(q).

Correction de l'exercice 3:

Rappel méthode pour montrer que F et G sont supplémentaire dans E (i.e. que $E = F \oplus G$):

- 1) Montrer que F et G sont en somme directe (ce qui s'écrit $F + G = F \oplus G$), en montrant que $F \cap G = \{0\}$.
- 2) Montrer que F + G = E en montrant que tout élément de E peut s'écrire comme somme d'un élément de F et d'un élément de G.

Autre méthode en passant par les dimensions (ne fonctionne qu'en dimension finie):

- 1) Montrer que F et G sont en somme directe
- 2) Montrer que $\dim(F+G) = \dim(E)$, on peut se servir du résultat 1. pour dire que $\dim(F+G) = \dim(F \oplus G)$ $\dim(F) + \dim(G)$.

Correction:

a) Montrons que F et G sont en somme directe : Soit $u=(x,y,z)\in F\cap G$. Alors il existe $k\in\mathbb{R}$ tel que $u=k\cdot (1,2,-1)$ donc u=(k,2k,-k). Comme $u\in F$ on a k+2k-(-k)=0 donc 4k=0 donc k=0 et finalement u=(0,0,0). Ainsi :

$$F \cap G = \{0_E\}$$

Montrons que F + G = E

Soit $u=(x,y,z)\in E$. Raisonnons par analyse synthèse et supposons qu'il existe un vecteur $v_F=(x_F,y_F,z_F)$ dans F et un vecteur $v_G=(x_G,y_G,z_G)$ dans G tels que $u=v_F+v_G$. Alors il existe $k\in\mathbb{R}$ tels que $v_G=(k,2k,-k)$ donc

$$\begin{cases} x_G = k \\ y_G = 2k \\ z_G = -k \end{cases}.$$

On a ensuite:

$$\begin{cases} x_F = x - x_G \\ y_F = y - y_G \\ z_F = z - z_G \end{cases} \iff \begin{cases} x_F = x - k \\ y_F = y - 2k \\ z_F = z + k \end{cases}$$

et comme $v_F \in F$ il faut que $x_F + y_F - z_F = 0$, d'où

$$(x - k) + (y - 2k) - (z + k) = 0$$

donc nécessairement :

$$k = \frac{x + y - z}{4}$$

On en déduit :

$$\begin{cases} x_G = \frac{x+y-z}{4} \\ y_G = \frac{x+y-z}{2} \\ z_G = \frac{-x-y+z}{4} \end{cases}$$

puis

$$\begin{cases} x_F = \frac{3x - y + z}{4} \\ y_F = \frac{y + z - x}{2} \\ z_F = \frac{x + y + 3z}{4} \end{cases}$$

Réciproquement, pour tout vecteur u=(x,y,z) de E, en posant

$$v_F = \left(dfrac3x - y + z4 , \frac{y + z - x}{2} , \frac{x + y + 3z}{4} \right)$$
 et $v_G = \left(\frac{x + y - z}{4} , \frac{x + t - z}{2} , \frac{z - x - y}{4} \right)$

on a bien $v_F \in F$, $v_G \in G$ et $u = v_F + v_G$ (vérification immédiate d'après les calculs ci-dessus).

Conclusion: E = F + G

Bilan : $E = F \oplus G$, autrement dit F et G sont supplémentaires dans E.

Remarque : Lorsqu'on montre par analyse synthèse que E = F + G, la solution trouvée est unique ce qui prouve que chaque élément de F + G s'écrit de façon unique comme somme d'un élément de F et d'un élément de G. C'est la définition d'une somme directe donc cela suffit à montrer que $E = F \oplus G$.

b) Montrons que $F+G=F\oplus G$: pour cela il suffit de montrer que $F\cap G=\{0_{\mathbb{R}_2[X]}\}.$

Soit donc P un polynôme de degré 2 à coefficient réel dans $F \cap G$. Il existe un réel a tel que $P(X) = aX^2$ car $P \in G$, et P(1) = P(0) donc a = 0. Ainsi P est le polynôme nul donc on a bien $F \cap G = \{0_{\mathbb{R}_2[X]}\}$.

Montrons que $\mathbb{R}_2[X] = F + G$. Soit $P \in \mathbb{R}_2[X]$ et $(a,b,c) \in \mathbb{R}^2$ tels que $P(X) = aX^2 + bX + c$. Raisonnons par analyse-synthèse et supposons qu'il existe deux polynômes $Q \in F$ et $R \in G$ tels que P = Q + R. Soient $(a',b',c') \in \mathbb{R}^3$ et $a'' \in \mathbb{R}$ tels que $Q(X) = a'X^2 + b'X + c'$ et $R(X) = a''X^2$. Comme P(X) = Q(X) + R(X) on a par identification des coefficients :

$$\begin{cases} a = a' + a'' \\ b = b' \\ c = c' \end{cases}$$

et comme Q(0) = Q(1) on a c' = a' + b' + c' d'où a' + b' = 0. Les coefficients de Q et R sont entièrement déterminés par ceux de P:

$$\begin{cases} a'' = a+b \\ a' = -b" = -b \\ b' = b \\ c' = c \end{cases}$$

Réciproquement, en posant $Q(X) = -bX^2 + bX + c$ et $R(X) = (a+b)X^2$ on a bien $Q(X) \in F$ et $R(X) \in G$ et P(X) = Q(X) + R(X). Ainsi $\mathbb{R}_2[X] = F + G$ donc finalement $\mathbb{R}_2[X] = F \oplus G$.

c) Montrons que $F + G = F \oplus G$: soit $M \in \mathcal{A}_n(\mathbb{R}) \cap \mathcal{S}_n(\mathbb{R})$ une matrice à la fois symétrique et antisymtrique. On a $\overline{{}^t M} = M$ et $\overline{{}^t M} = M$ e

Par linéarité de la transposée : ${}^tM = {}^tS + {}^tA = S - A$ (2). La somme et la différence de (1) et (2) donnent :

$$\begin{cases}
M + {}^t M &= 2S \\
M - {}^t M &= 2A
\end{cases}$$

d'où
$$S = \frac{1}{2}(M + {}^{t}M)$$
 et $A = \frac{1}{2}(M - {}^{t}M)$.

Réciproquement, en posant $S = \frac{1}{2}(M + {}^tM)$ et $A = \frac{1}{2}(M - {}^tM)$ on a bien S + A = M. De plus : ${}^tS = \frac{1}{2}({}^tM + M) = S$ donc $S \in \mathcal{S}_n(\mathbb{R})$ et ${}^tA = \frac{1}{2}({}^tM - M) = -\frac{1}{2}(M - {}^tM) = -A$ donc $A \in \mathcal{A}_n(\mathbb{R})$.

Finalement on a bien $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) + \mathcal{A}_n(\mathbb{R})$ donc E = F + G donc finalement $E = F \oplus G$.

d) Montrons que $F+G=F\oplus G$: si $f\in F\cap G,\, f$ est une fonction à la fois paire et impaire. Alors :

$$\forall x \in \mathbb{R}, \quad \begin{cases} f(-x) &= f(x) \\ f(-x) &= -f(x) \end{cases} \implies \forall x \in \mathbb{R}, \quad f(x) = -f(x)$$
$$\implies \forall x \in \mathbb{R}, \quad f(x) = 0$$

donc $f = 0_E$, c'est la fonction nulle.

Montrons que E = F + G: Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ une fonction quelconque de \mathbb{R} dans \mathbb{R} . On raisonne par analyse synthèse et on suppose d'abord qu'il existe une fonction p paire et une fonction i impaire définies sur \mathbb{R} telles que f = p + i, c'est à dire telle que : $\forall x \in \mathbb{R}$, f(x) = p(x) + i(x) (1).

On a donc : $\forall x \in \mathbb{R}$, f(-x) = p(-x) + i(-x) = p(x) - i(x) (2) par parité de p et imparité de i. En faisant (1)+(2) et (1)-(2) on obtient :

$$\forall x \in \mathbb{R}, \quad \left\{ \begin{array}{rcl} f(x) + f(-x) & = & 2p(x) \\ f(x) - f(-x) & = 2i(x) \end{array} \right.$$

d'où
$$p(x) = \frac{1}{2}(f(x) + f(-x))$$
 et $i(x) = \frac{1}{2}(f(x) - f(-x))$.

Réciproquement, en posant $p(x) = \frac{1}{2}(f(x) + f(-x))$ et $i(x) = \frac{1}{2}(f(x) - f(-x))$ on a pour tout réel x : f(x) = p(x) + i(x). De plus, pour tout réel $x, p(-x) = \frac{1}{2}(f(-x) + f(x)) = p(x)$ et $i(-x) = \frac{1}{2}(f(-x) - f(x)) = -\frac{1}{2}(f(x) - f(-x)) = -i(x)$

donc p est paire et i est impaire.

On a donc bien E = F + G donc finalement $E = F \oplus G$.

Remarque plus poussée (après avoir vu les symétries) : Pourquoi ces deux dernières questions ont-elle des réponses si similaires ?

Rappelez vous que pour toute symétrie s d'un espace vectoriel E, on a $E = \text{Ker}(s - \text{id}_E) \oplus \text{Ker}(s + \text{id}_E)$.

Pour les matrices, si on considère la symétrie $s: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto {}^tM$ (c'en est bien une car $s^2 = \mathrm{id}$), alors il est presque immédiat que :

$$S_n(\mathbb{R}) = \operatorname{Ker}(s - \operatorname{id})$$
 et $A_n(\mathbb{R}) = \operatorname{Ker}(s + \operatorname{id})$

Pour les fonctions de \mathbb{R} dans \mathbb{R} , si on considère la symétrie $s: \mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathcal{F}(\mathbb{R}, \mathbb{R})$ qui à toute fonction f associe la fonction $s(f): x \mapsto f(-x)$ (c'est bien une symétrie car $s^2 = \mathrm{id}$), alors il est presque immédiat que :

$$\mathcal{P}(\mathbb{R}, \mathbb{R}) = \operatorname{Ker}(s - \operatorname{id})$$
 et $\mathcal{I}(\mathbb{R}, \mathbb{R}) = \operatorname{Ker}(s + \operatorname{id})$

Les deux résultats : $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$ et $\mathcal{F}(\mathbb{R}, \mathbb{R}) = \mathcal{P}(\mathbb{R}, \mathbb{R}) \oplus \mathcal{I}(\mathbb{R}, \mathbb{R})$ ne sont que deux cas particuliers de $E = \operatorname{Ker}(s - \operatorname{id}_E) \oplus \operatorname{Ker}(s + \operatorname{id}_E)$.

Correction de l'exercice 4:

1) Montrons que $\mathbb{R}^3 = E_1 + E_2$: On a $E_1 \subset \mathbb{R}^3$ et $E_2 \subset \mathbb{R}^3$ donc $E_1 + E_2 \subset \mathbb{R}^3$.

Raisonnons par analyse synthèse pour montrer l'inclusion réciproque.

Analyse: Soit $u=(x,y,z)\in\mathbb{R}^3$, supposons que u=(a,a,a)+(x',y',z') avec $a\in\mathbb{R}$ et $(x',y',z')\in\mathbb{R}^3$ tels que x'+y'+z'=0.

$$\text{Alors} \left\{ \begin{array}{ll} x & = & a+x' \\ y & = & a+y' \\ z & = & a+z' \end{array} \right., \text{ donc } x+y+z = 3a + \underbrace{(x'+y'+z')}_{=0} = 3a. \text{ On en d\'eduit que } a = \frac{1}{3}(x+y+z), \text{ et on a alors } x' = x - \frac{1}{3}(x+y+z), \ y' = y - \frac{1}{3}(x+y+z), \text{ et } z' = z - \frac{1}{3}(x+y+z). \end{array} \right.$$

Synthèse: Soit $u = (x, y, z) \in \mathbb{R}^3$ quelconque. Posons $a = \frac{1}{3}(x + y + z)$ et posons x' = x - a, y' = y - a et z' = z - a. Alors x' + y' + z' = x + y + z - 3a = x + y + z - (x + y + z) = 0, donc $(x', y', z') \in E_2$.

De plus, $\underbrace{(a, a, a)}_{\in E_1} + \underbrace{(x', y', z')}_{\in E_2} = (a + x', a + y', a + z') = (x, y, z)$. Ainsi, $(x, y, z) \in E_1 + E_2$, donc $\mathbb{R}^3 \subset E_1 + E_2$ et donc

finalement $\mathbb{R}^3 = E_1 + E_2$

Montrons que $E_1 \cap E_2 = \{(0,0,0)\}$: Soit $u \in E_1 \cap E_2$. Alors il existe $a \in \mathbb{R}$ tel que u = (a,a,a). De plus, a+a+a=0 donc 3a=0 et ainsi a=0, on a donc u=(0,0,0) et finalement $E_1 \cap E_2 = \{(0,0,0)\}$.

On en conclut que $\mathbb{R}^3 = E_1 \oplus E_2$.

2) Soit $(x, y, z) \in \mathbb{R}^3$ un vecteur quelconque, alors $(x, y, z) = \underbrace{(a, a, a)}_{\in E_1} + \underbrace{(x', y', z')}_{\in E_2}$ avec $a = \frac{1}{3}(x, y, z)$ et x' = x - a, y' = y - a et z' = z - a d'après la question précédente. On en déduit que

$$p(x,y,z) = (x',y',z')$$

$$= \left(x - \frac{1}{3}(x+y+z), y - \frac{1}{3}(x+y+z), z - \frac{1}{3}(x+y+z)\right)$$

$$= \left(\frac{2}{3}x - \frac{1}{3}y - \frac{1}{3}z, -\frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z, -\frac{1}{3}x - \frac{1}{3}y + \frac{2}{3}z\right)$$

On en déduit que la matrice de p dans la base canonique est $A = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$

3) p est un projecteur donc $E = \text{Im}(p) \oplus \text{Ker}(p)$. $\dim(\text{Ker}(p)) = \dim(E_1) = 2$ et $\dim(\text{Im}(p)) = \dim(E_2) = 3 - \dim(E_1) = 2$. En prenant une base (e_1, e_2) de E_2 à laquelle on adjoint une base (e_3) de E_1 , on obtient une base (e_1, e_2, e_3) de E dans laquelle la matrice représentative de p est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

La matrice de passage P de la base canonique à la base (e_1, e_2, e_3) vérifie donc $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Correction de l'exercice 5 :

1) A est la matrice d'un projecteur si et seulement si $A^2 = A$.

Or
$$A^2 = \begin{pmatrix} a^2 - a & -a^2 + a \\ a - 1 & -a + 1 \end{pmatrix}$$
 donc A est la matrice d'un projecteur si et seulement si
$$\begin{cases} a^2 - a & = a \\ -a^2 + a & = -a \\ a - 1 & = 1 \\ -a + 1 & = -1 \end{cases}$$
.

La seule solution de ce système est a=2 donc $A=\begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$.

2)
$$\operatorname{Im}(A) = \operatorname{Vect}\left(\begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} -2\\-1 \end{pmatrix}\right) = \operatorname{Vect}\left(\begin{pmatrix} 2\\1 \end{pmatrix}\right).$$
 Soit $X = \begin{pmatrix} x\\y \end{pmatrix}. \ X \in \operatorname{Ker}(A) \Longleftrightarrow \left\{ \begin{array}{cc} 2x - 2y & = & 0\\ x - y & = & 0 \end{array} \right. \Longleftrightarrow x - y = 0 \Longleftrightarrow x = y \operatorname{donc} \operatorname{Ker}(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right).$ On en conclut que A est la projection sur $\operatorname{Vect}\left(\begin{pmatrix} 2\\1 \end{pmatrix}\right)$ parallèlement à $\operatorname{Vect}\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right).$

3) Notons p le projecteur associé à la matrice A dans la base canonique de \mathbb{R}^2 . En posant $e_1 = (2,1)$ et $e_2 = (1,1)$, on a $e_1 \in \text{Im}(p)$ et $e_2 \in \text{Ker}(p)$, donc $p(e_1) = e_1$ et $p(e_2) = 0$, et $p(e_1) = e_2$ est une base de $p(e_2) = 0$. Dans cette base, la matrice de $p(e_1) = e_2$ est $p(e_2) = e_1$ et $p(e_2) = e_2$ est une base de $p(e_2) = e_$

En posant $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ la matrice de passage de la base canonique à la base (e_1, e_2) , on a donc $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Il ne reste plus qu'à déterminer P^{-1} :

$$\forall (x,y) \in \mathbb{R}^2 \forall (x',y') \in \mathbb{R}^2, \quad P\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} \Longleftrightarrow \begin{cases} 2x+y &= x' \\ x+y &= y' \end{cases}$$
$$\iff \begin{cases} x &= x'-y' \\ y &= -x'+2y' \end{cases}$$

$$\operatorname{donc}\, P^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

On peut vérifier par le calcul qu'on a bien $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$:

$$P^{-1}AP = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Correction de l'exercice 6 :

1) Suivant l'indication de l'énoncé, commençons par montrer que $(i) \Leftrightarrow (ii)$.

On a toujours $\operatorname{Ker}(u) \subset \operatorname{Ker}(u^2)$ et $\operatorname{Im}(u^2) \subset \operatorname{Im}(u)$. Ainsi dans les deux cas l'égalité des dimensions est une condition nécessaire et suffisante pour avoir égalité de ces sous-espaces vectoriels.

Or d'après le théorème du rang, $\dim(\operatorname{Ker}(u)) = \dim(\operatorname{Ker}(u^2)) \iff \dim(E) - \operatorname{rg}(u) = \dim(E) - \operatorname{rg}(u^2) \iff \operatorname{rg}(u) = \operatorname{rg}(u^2)$.

Ainsi, on a donc bien $Ker(u) = Ker(u^2) \iff Im(u) = Im(u^2)$.

Montrons que $(i) \Longrightarrow (iii)$

Supposons que $\operatorname{Ker}(u) = \operatorname{Ker}(u^2)$, et soit $x \in \operatorname{Ker}(u) \cap \operatorname{Im}(u)$. Alors il existe un vecteur $y \in E$ tel que x = u(y), et u(x) = 0 donc u(u(y)) = 0. Ainsi $y \in \operatorname{Ker}(u^2)$ mais puisque $\operatorname{Ker}(u^2) = \operatorname{Ker}(u)$ on en déduit que u(y) = 0 donc x = 0. Ainsi $\operatorname{Ker}(u) \cap \operatorname{Im}(u) = \{0\}$, ils sont donc en somme directe donc $\operatorname{dim}(\operatorname{Ker}(u) + \operatorname{Im}(u)) = \operatorname{dim}(\operatorname{Ker}(u)) + \operatorname{dim}(\operatorname{Im}(u))$. Or d'après le théorème du rang $\operatorname{dim}(\operatorname{Ker}(u)) + \operatorname{dim}(\operatorname{Im}(u)) = \operatorname{dim}(E)$, donc finalement $\operatorname{Ker}(u) + \operatorname{Im}(u) = E$ et ainsi $\operatorname{Ker}(u) \oplus \operatorname{Im}(u) = E$.

On a donc montré que $(i) \Longrightarrow (iii)$.

Montrons que $(iii) \Longrightarrow (ii)$

Supposons que $E = \text{Ker}(u) \oplus \text{Im}(u)$, et soit $x \in \text{Im}(u)$. Alors il existe $y \in E$ tel que x = u(y). Comme $E = \text{Ker}(u) \oplus \text{Im}(u)$ il existe un unique couple $(y_1, y_2) \in \text{Ker}(u) \times \text{Im}(u)$ tel que $y = y_1 + y_2$.

Ainsi, $x = u(y_1 + y_2) = u(y_2)$ car $y_1 \in \text{Ker}(u)$. Comme $y_2 \in \text{Im}(u)$, il existe un vecteur $y_3 \in E$ tel que $y_2 = u(y_3)$ ce qui entraı̂ne $x = u(u(y_3))$ donc finalement $x \in \text{Im}(u^2)$. On a montré que $\text{Im}(u) \subset \text{Im}(u^2)$ et puisque l'inclusion $\text{Im}(u^2) \subset \text{Im}(u)$ est toujours vrai on en conclut finalement que $\text{Im}(u) = \text{Im}(u^2)$.

On a donc montré que $(iii) \Longrightarrow (ii)$

Conclusion : puisque $(i) \iff (ii)$ et que $(i) \implies (iii)$ et $(iii) \implies (ii)$, on conclut à l'équivalence de ces trois propositions.

2) Les propositions précédentes sont évidemment vraies pour les projecteurs, mais elles sont aussi vrais pour tout isomorphismes puisqu'on a alors $\text{Ker}(u) = \text{Ker}(u^2) = \{0\}$ et $\text{Im}(u) = \text{Im}(u^2) = E$, ainsi que pour tout endomorphisme diagonalisable.

Correction de l'exercice 7:

- 1) Pour tout $x \in E$ on a $(f+g)(x) = f(x) + g(x) \in \text{Im}(f) + \text{Im}(g)$ donc $\text{Im}(f+g) \subset \text{Im}(f) + \text{Im}(g)$. Or, $\dim(\text{Im}(f) + \text{Im}(g)) \leq \dim(\text{Im}(f)) + \dim(\text{Im}(g)) = \text{rg}(f) + \text{rg}(g)$. On en déduit que $\text{rg}(f+g) \leq \text{rg}(f) + \text{rg}(g)$.
- 2) Supposons que l'inégalité précédente soit une égalité. Alors par égalité des dimensions, on a Im(f+g) = Im(f) + Im(g). D'après la formule de Grassmann $\dim(\text{Im}(f) + \text{Im}(g)) = \dim(\text{Im}(f)) + \dim(\text{Im}(g)) \dim(\text{Im}(f) \cap \text{Im}(g))$, on en déduit que $\dim(\text{Im}(f) \cap \text{Im}(g)) = 0$ donc $\text{Im}(f) \cap \text{Im}(g) = \{0\}$.

Pour montrer que $\operatorname{Ker}(f) + \operatorname{Ker}(g) = E$, on commence par montrer que $\operatorname{Ker}(f+g) = \operatorname{Ker}(f) \cap \operatorname{Ker}(g)$. En effet, si $x \in \operatorname{Ker}(f+g)$, alors f(x) = -g(x) = g(-x) Ainsi, f(x) et g(x) sont tous deux dans $\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\}$ donc f(x) = g(x) = 0, d'où $x \in \operatorname{Ker}(f) \cap \operatorname{Ker}(g)$. On en déduit que $\operatorname{Ker}(f+g) \subset \operatorname{Ker}(f) \cap \operatorname{Ker}(g)$. L'inclusion réciproque est immédiate.

On a maintenant:

$$\dim(\operatorname{Ker}(f) + \operatorname{Ker}(g)) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(g)) - \dim(\operatorname{Ker}(f) \cap \operatorname{Ker}(g))$$

$$= n - \operatorname{rg}(f) + n - \operatorname{rg}(g) - \dim(\operatorname{Ker}(f+g))$$

$$= 2n - \operatorname{rg}(f) - \operatorname{rg}(g) - (n - \operatorname{rg}(f+g))$$

$$= n \qquad \operatorname{car} \operatorname{rg}(f+g) = \operatorname{rg}(f) + \operatorname{rg}(g) \operatorname{par} \operatorname{hypothèse}$$

d'où l'on déduit que Ker(f) + Ker(g) = E par inclusion et égalité des dimensions.

Correction de l'exercice 8 :

1) Soient $P, Q \in F$ et $\lambda, \mu \in \mathbb{R}$.

Le polynôme nul appartient à F donc \underline{F} est non vide.

 $(\lambda P + \mu Q)(1) = \lambda P(1) + \mu Q(1) = 0$ car $P, Q \in F$ donc $\lambda P + \mu Q \in F$. Ainsi \underline{F} est stable par combinaison linéaire. Enfin, $F \neq E$ car $X \in E$ mais $X \notin F$.. En effet, si P(X) = X alors $P(1) = 1 \neq 0$.

F est donc bien un sous-espace vectoriel strict de E.

Soit P un polynôme de E quelconque. Posons Q(X) = P(X) - P(1), Q est alors un polynôme de même degré que P qui appartient à F, et on a P(X) = Q(X) + P(1).

Tout polynôme de $\mathbb{R}_n[X]$ peut donc s'écrire comme somme d'un polynôme de F et d'un polynôme constant. Soit donc G = Vect (1) le sous-espace vectoriel de $\mathbb{R}_n[X]$ constitué des polynômes constants. On vient de montrer que F + G = E. Pour montrer que $F \oplus G = E$ il suffit donc de montrer que $F \cap G = \{0\}$.

Soit $P \in F \cap G$. P est constant donc P(X) = a avec $a \in \mathbb{R}$, et $P \in F$ donc P(1) = 0 = a. Ainsi P est le polynôme constant, donc $F \cap G = \{0\}$.

Finalement $F \oplus \text{Vect}(1) = E$

2) On vérifie de façon analogue à la question 1 que F est un sous-espace vectoriel de E.

Soit $P \in \mathbb{R}_n[X]$ quelconque. Pour obtenir un polynôme qui s'annule en 1 et en 2, il suffit de lui soustraire un polynôme de degré 1 qui vaut P(1) en 1 et P(2) en 2.

Posons $R(X) = \frac{P(2) - P(1)}{2 - 1}(X - 1) + P(1) = (P(2) - P(1))X + 2P(1) - P(2))$, ce polynôme vérifie R(1) = P(1) et R(2) = P(2), ainsi en posant Q(X) = P(X) - R(X), on a bien $\deg(Q) \leq \max(\deg(P), \deg(Q)) \leq n$ car $n \geq 2$, et $Q \in F$.

Tout polynôme de $\mathbb{R}_n[X]$ peut donc s'écrire comme somme d'un polynôme de F et d'un polynôme de degré 1. Posons $G = \text{Vect}(1, X) = \mathbb{R}_1[X]$, on a montré que F + G = E et il reste à montrer que $F \cap G = \{0\}$.

Soit $P \in F \cap G$. Il existe $a, b \in \mathbb{R}$ tels que F(X) = aX + b et F(1) = F(2) = 0 donne $\begin{cases} a+b & = 0 \\ 2a+b & = 0 \end{cases}$ d'où a=b=0.

On a donc bien $F \cap G = \{0\}$ d'où l'on conclut que $F \oplus G = E$.

3) On vérifie de façon analogue aux deux premières questions que F est un sous-espace vectoriel de E.

Soit $P \in \mathbb{R}_n[X]$ que l'on cherche à écrire comme somme d'un polynôme de F et d'un autre polynôme.

Il suffit de trouver un polynôme R tel que $R(x_1) = P(x_1)$, $R(x_2) = P(x_2)$,..., $R(x_k) = P(x_k)$. On peut penser aux polynômes interpolateurs de Lagrange et poser

$$R(X) = \sum_{i=1}^{k} P(x_i) \frac{\prod_{j=1, j \neq i}^{k} (X - x_j)}{\prod_{j=1, j \neq i}^{k} (x_i - x_j)}$$

Ce polynôme est un polynôme de degré k qui vérifie la condition énoncé, donc en posant Q(X) = P(X) - R(X) on a $Q \in F$ et P peut alors s'écrire comme somme d'un polynôme de F et d'un polynôme de degré k-1.

Posons $G = \text{Vect}(1, X, X^2; \dots, X^{k-1}) = \mathbb{R}_{k-1}[X]$. On a déjà montré que F + G = E.

Si $P \in F \cap G$, P est un polynôme de degré k-1 (car $P \in G$) qui s'annule k fois (car $P \in F$). Ainsi P est le polynôme nul, donc finalement $F \cap G = \{0\}$.

 $F \oplus G = E$ donc G est un supplémentaire de F dans E.

Correction de l'exercice 9 : Sens direct : supposons que F est stable par q. Puisque q est un projecteur de E on a $E = \operatorname{Ker}(q) \oplus \operatorname{Im}(q)$. Tout vecteur x de F est dans E et peut donc s'écrire $x = x_1 + x_2$ avec $x_1 \in \operatorname{Ker}(q)$ et $x_2 \in \operatorname{Im}(q)$. On a alors $q(x) = q(x_1) + q(x_2) = x_2$. Comme F est stable par q, $q(x) \in F$ donc $x_2 \in F$. Il s'ensuit que $x_1 = x - x_2 \in F$

donc finalement $x_1 \in F \cap \text{Ker}(q)$ et $x_2 \in F \cap \text{Im}(q)$. On a montré que $F = (F \cap \text{Ker}(q)) + (F \cap \text{Im}(q))$

De plus, $F \cap \text{Ker}(q)$ et $F \cap \text{Im}(q)$ sont clairement en somme directe car Ker(q) et Im(q) le sont. Ainsi, on a bien $F = (F \cap \text{Ker}(q)) \oplus (F \cap \text{Im}(q))$.

Sens indirect : supposons que $F = (F \cap \operatorname{Ker}(q)) \oplus (F \cap \operatorname{Im}(q))$.

Soit $x \in F$, montrons que $q(x) \in F$. Par hypothèse, il existe $x_1 \in F \cap \text{Ker}(q)$ et $x_2 \in F \cap \text{Im}(q)$ tels que $x = x_1 + x_2$, donc $q(x) = x_2 \in F \cap \text{Im}(q)$ donc $q(x) \in F$. Ainsi F est bien stable par q.

Correction de l'exercice 10: Sens direct : supposons que p et u commutent.

Soit $x \in \text{Ker}(p)$, alors p(x) = 0 donc u(p(x)) = 0 donc p(u(x)) = 0. Ainsi, $u(x) \in \text{Ker}(p)$. On a montré que Ker(p) est stable par u.

Soit $y \in \text{Im}(p)$. Alors il existe $x \in E$ tel que y = p(x) donc u(y) = u(p(x)) = p(u(x)) par hypothèse, donc $u(y) \in \text{Im}(p)$. On a montré que Im(p) est stable par u.

Sens indirect : supposons que Ker(p) et Im(p) sont stables par u.

 \overline{p} est un projecteur donc $E = \operatorname{Im}(p) \oplus \operatorname{Ker}(p)$ donc tout vecteur x de E peut s'écrire $x = x_1 + x_2$ avec $x_1 \in \operatorname{Im}(p)$ et $x_2 \in \operatorname{Ker}(p)$, donc $u(p(x)) = u(x_1)$ et $p(u(x)) = p(u(x_1)) + p(u(x_2))$. Or $u(x_1) \in \operatorname{im}(p)$ et $u(x_2) \in \operatorname{Ker}(p)$ par stabilité donc $p(u(x)) = u(x_1)$. On a donc bien u(p(x)) = p(u(x)) pour tout vecteur x de E, donc p et u commutent.

Correction de l'exercice 11:

1) Montrons d'abord que F et G sont en somme directe.

Soit $f \in F \cap G$, il existe un réel $a \in \mathbb{R}$ tel que $\forall x \in [0,1], f(x) = a$. Ainsi $\int_0^1 f(t) dt = a$, mais puisque $f \in F$ on a a = 0 donc f = 0. Ainsi, $F \cap G = \{0_E\}$, ils sont donc en somme directe.

Montrons maintenant que F+G=E. Soit $f\in E$. Posons $a=\int_0^1 f(t)\,\mathrm{d}t$. Soit g la fonction définie sur [0,1] par g(x)=f(x)-a.

Alors $\int_0^1 g(t) dt = \int_0^1 f(t) dt - \int_0^1 a dt = a - a = 0$. Ainsi $g \in G$ et f = g + a donc $f \in F + G$. On a donc bien $E = \bigoplus F + G$.

2) Pour $f \in E$, on a vu dans la question précédente que f = g + a avec $a = \int_0^1 f(t) dt$ et puisque F et G sont en somme directe cette décomposition est unique.

Ainsi, $\forall x \in [0, 1], \ p(f)(x) = f(x) - \int_0^1 f(t) \, dt.$

Correction de l'exercice 12:

1) Supposons que $p \circ q = q \circ p = 0$. Alors $(p+q) \circ (p+q) = p^2 + \underbrace{p \circ q}_{=0} + \underbrace{q \circ p}_{=0} + q^2 = p^2 + q^2 = p + q$. Ainsi $(p+q)^2 = p + q$

donc p + q est un projecteur.

Supposons que p + q soit un projecteur.

On a donc $(p+q)^2 = p+q$ d'où $p \circ q + q \circ p = 0$

Ainsi:

$$p \circ q = -q \circ p$$

donc

$$p^2\circ q=-p\circ q\circ p$$

en composant par p

$$p\circ q=-(-q\circ p)\circ p$$

donc

$$p \circ q = q \circ p^2$$

donc

$$p\circ q=q\circ p$$

Ainsi $p \circ q = -q \circ p$ et $p \circ q = q \circ p$ donc $p \circ q = -p \circ q$ d'où $2p \circ q = 0$ donc $p \circ q = 0$ et il s'ensuit que $q \circ p = 0$.

2) Supposons que p + q est un projecteur.

L'inclusion $\operatorname{Im}(p+q) \subset \operatorname{Im}(p) + \operatorname{Im}(q)$ est claire. Réciproquement, si $y \in \operatorname{Im}(p) + \operatorname{Im}(q)$, il existe $x_1, x_2 \in E$ tels que $y = p(x_1) + q(x_2)$ donc $(p+q)(y) = p^2(x_1) + p \circ q(x_2) + q \circ p(x_1) + q^2(x_2) = p(x_1) + q(x_2) = y$ car $p \circ q = q \circ p = 0$ d'après la question précédente. Ainsi $y \in \operatorname{Im}(p+q)$ donc finalement $\operatorname{Im}(p+q) = \operatorname{Im}(p) + \operatorname{Im}(q)$.

Montrons que la somme est directe : si $y \in \text{Im}(p) \cap \text{Im}(q)$, alors $y = p(x_1) = q(x_2)$ pour un certain $(x_1, x_2) \in E^2$, donc $y = p(y) = p(q(x_2)) = 0$, donc $\text{Im}(p) \cap \text{Im}(q) = \{0\}$.

Finalement on a bien $\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$.

L'inclusion $\operatorname{Ker}(p) \cap \operatorname{Ker}(q) \subset \operatorname{Ker}(p+q)$ est claire.

Soit $x \in \text{Ker}(p+q)$. Alors p(x) = -q(x) donc $p^2(x) = -p(q(x)) = 0$ donc p(x) = 0. Ainsi $x \in \text{Ker}(p)$. De même en composant par q on obtient $0 = q(p(x)) = -q^2(x)$ donc q(x) = 0 donc $x \in \text{Ker}(q)$. Finalement $\text{Ker}(p+q) \subset \text{Ker}(p) \cap \text{Ker}(q)$ donc on a bien $\text{Ker}(p+q) = \text{Ker}(p) \cap \text{Ker}(q)$.

Correction de l'exercice 13:

- 1) Soit $x \in \text{Ker}(f) \cap \text{Im}(g)$. Alors il existe $y \in F$ tel que g(y) = x, et f(x) = 0 = f(g(y)). En composant cette égalité par g, on obtient g(f(g(y))) = 0 mais puisque $g \circ f \circ g = g$ on a finalement g(y) = 0, d'où x = 0.

 Ainsi $\text{Ker}(f) \cap \text{Im}(g) = \{0\}$, Ker(f) et Im(g) sont en somme directe.
- 2) Soit $x \in E$. Raisonnons par analyse-synthèse et supposons que l'on a x = y + z avec $y \in \text{Ker}(f)$ et $z \in \text{Im}(g)$. Il existe donc $z' \in F$ tel que z = g(z').

En composant l'égalité x = y + z par f on obtient f(x) = f(z) = f(g(z')), puis en composant par g on obtient g(f(x)) = g(f(g(z'))) = g(z') = z.

Réciproquement, si l'on pose z = g(f(x)) et y = x - z = x - g(f(x)), on aura x = y + z par définition de y et z, et il reste à vérifier que $y \in \text{Ker}(f)$ et que $z \in \text{Im}(g)$. La relation $z \in \text{Im}(g)$ est évidente car z = g(f(x)).

Enfin, f(y) = f(x) - f(z) = f(x) - f(g(f(x))) = f(x) - f(x) = 0 puisqu'on a l'égalité $f \circ g \circ f = f$. Ainsi $g \in \text{Ker}(f)$.

Finalement on a bien $\operatorname{Ker}(f) \oplus \operatorname{Im}(g) = E$

3) Soit $P(x) = \sum_{k=0}^{n} a_k x^k \in \mathbb{R}_n[x]$. On a alors

$$f(P)(x) = \sum_{k=1}^{n} k a_k x^{k-1}$$

$$= \sum_{k=0}^{n-1} (k+1) a_{k+1} x^k$$

$$g(f(P))(x) = \sum_{k=0}^{n-1} (k+1) a_{k+1} \int_0^x t^k dt$$

$$= \sum_{k=0}^{n-1} (k+1) a_{k+1} \frac{x^{k+1}}{k+1}$$

$$= \sum_{k=0}^{n-1} a_{k+1} x^{k+1}$$

$$= \sum_{k=1}^{n} a_k x^k$$

$$f(g(f(P)))(x) = \sum_{k=1}^{n} k a_k x^{k-1}$$

$$= \sum_{k=0}^{n-1} (k+1) a_{k+1} x^k$$

donc on a bien $f \circ g \circ f = f$ De même,

$$g(P)(x) = \sum_{k=0}^{n} a_k \int_0^x t^k dt$$

$$= \sum_{k=0}^{n} \frac{a_k t^{k+1}}{k+1}$$

$$= \sum_{k=1}^{n+1} \frac{a_{k-1} t^k}{k}$$

$$f(g(P))(x) = \sum_{k=1}^{n+1} \frac{a_{k-1} k t^{k-1}}{k}$$

$$= \sum_{k=1}^{n+1} a_{k-1} t^{k-1}$$

$$= \sum_{k=0}^{n} a_k t^k$$

$$= P$$
(D)

$$g(f(g(P))) = g(P)$$

Correction de l'exercice 14:

1) p est un projecteur donc $E = \text{Im}(p) \oplus \text{Ker}(p)$. Soit (e_1, e_2, \dots, e_p) une base de Im(p) et $(e_{p+1}, e_{p+2}, \dots, e_n)$ une base de Ker(p). Alors $(e_1, e_2, \dots, e_p, e_{p+1}, \dots, e_n)$ est une base de E et dans cette base la matrice de p est

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & & \vdots & \vdots & & \vdots \\ \vdots & & \ddots & 0 & 0 & & \vdots \\ 0 & \cdots & 0 & 1 & 0 & \cdots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

le nombre de 1 dans cette matrice est égal à la dimension de Im(p), donc tr(p) = tr(A) = p = rg(p). Ainsi, tout projecteur a son rang égal à sa trace.

- 2) Raisonnons par récurrence comme suggéré par l'énoncé. On note $\mathcal{P}(n)$: « Si F_1, F_2, \ldots, F_n est une famille de sous espaces vectoriels de E on a $\dim(F_1 + F_2 + \cdots + F_n) \leq \dim(F_1) + \dim(F_2) + \cdots + \dim(F_n)$ avec égalité si et seulement si F_1, F_2, \ldots, F_n sont en somme directe. ».
 - Initialisation: Pour n=2, on a $\dim(F_1+F_2)=\dim(F_1)+\dim(F_2)-\dim(F_1\cap F_2)$ d'où $\dim(F_1+F_2)\leq \dim(F_1)+\dim(F_2)$ avec égalité si et seulement si $\dim(F_1\cap F_2)=0$, si et seulement si $F_1\cap F_2=\{0\}$, si et seulement si F_1 et F_2 sont en somme directe. Ainsi $\mathcal{P}(2)$ est vraie.
 - **Hérédité**: Soit $n \ge 2$ un entier tel que $\mathcal{P}(n)$ est vraie. Soit $F_1, F_2, \dots F_{n+1}$ une famille de sous espaces vectoriels de E. Alors, $\dim(F_1 + F_2 + \dots + F_{n+1}) = \dim(F_1 + F_2 + \dots + F_n) + \dim(F_{n+1}) - \dim((F_1 + F_2 + \dots + F_n) \cap F_{n+1})$ Or, par hypothèse de récurrence, on a $\dim(F_1 + F_2 + \dots + F_n) \le \dim(F_1) + \dim(F_2) + \dots + \dim(F_n)$. Ainsi, on a

$$\dim(F_1 + F_2 + \dots + F_{n+1}) \leq \dim(F_1) + \dim(F_2) + \dots + \dim(F_n) + \dim(F_{n+1}) - \dim((F_1 + F_2 + \dots + F_n) \cap F_{n+1})$$

$$\leq \dim(F_1) + \dim(F_2) + \dots + \dim(F_{n+1})$$

avec égalité si et seulement si toutes les inégalités sont des égalités, c'est à dire si et seulement si $\dim(F_1 + F_2 + \cdots + \cdots + F_n) = \dim(F_1) + \dim(F_2) + \cdots + \dim(F_n)$ ET $\dim((F_1 + F_2 + \cdots + F_n) \cap F_{n+1}) = 0$.

Par hypothèse de récurrence, il y a égalité si et seulement si $F_1, F_2, \dots F_n$ sont en somme directe ET $(F_1 + F_2 + \dots + F_n) \cap F_{n+1} = \{0\}$, c'est à dire si et seulement si $F_1, F_2, \dots F_n$ sont en somme directe et F_{n+1} est en somme directe avec $F_1 \oplus F_2 \oplus \dots \oplus F_n$. Cette condition est vérifiée si et seulement si F_1, F_2, \dots, F_{n+1} sont en somme directe, donc $\mathcal{P}(n+1)$ est vraie.

— Conclusion: Par principe de récurrence on en conclut que $\mathcal{P}(n)$ est vraie quel que soit $n \in \mathbb{N}$.

3) Le sens réciproque est le plus facile, supposons que $\forall (i,j) \in [1,n]^2, i \neq j, p_i \circ p_j = 0$. Alors

$$(p_1 + p_2 + \dots + p_n)^2 = p_1^2 + p_2^2 + \dots + p_n^2$$

$$+ p_1 \circ p_2 + p_1 \circ p_3 + \dots + p_1 \circ p_n$$

$$+ p_2 \circ p_1 + p_2 \circ p_3 + \dots + p_2 \circ p_n$$

$$\vdots$$

$$+ p_n \circ p_1 + p_n \circ p_2 + \dots + p_n \circ p_{n-1}$$

$$= p_1^2 + p_2^2 + \dots + p_n^2$$

$$= p_1 + p_2 + \dots + p_n$$

car $p_1, p_2,...,p_n$ sont des projecteurs

ainsi, $p_1 + p_2 + \cdots + p_n$ est un projecteur.

Réciproquement, supposons que $p = p_1 + p_2 + \cdots + p_n$ soit un projecteur.

Remarquons que $\operatorname{Im}(p) \subset \operatorname{Im}(p_1) + \operatorname{Im}(p_2) + \cdots + \operatorname{Im}(p_n)$ (1). En effet, $\forall x \in E, p(x) = \sum_{i=1}^n p_i(x) \in \operatorname{Im}(p_1) + \operatorname{Im}(p_2) + \cdots + \operatorname{Im}(p_n)$.

On a $\operatorname{tr}(p) = \operatorname{tr}(p_1) + \operatorname{tr}(p_2) + \cdots + \operatorname{tr}(p_n) = \operatorname{rg}(p_1) + \operatorname{rg}(p_2) + \cdots + \operatorname{rg}(p_n)$ d'après la question 1 et par linéarité de la trace.

D'autre part, puisque p est un projecteur, on a aussi $\operatorname{tr}(p) = \operatorname{rg}(p)$. Finalement, $\dim(\operatorname{Im}(p)) = \sum_{i=1}^n \dim(\operatorname{Im}(p_1)) \ge \dim(\operatorname{Im}(p_1) + \dots + \operatorname{Im}(p_n))$ donc on conclut grâce à l'inclusion (1) que $\operatorname{Im}(p) = \operatorname{Im}(p_1) + \dots + \operatorname{Im}(p_n)$.

De plus, d'après la question 2 puisqu'on est dans un cas d'égalité entre $\dim(\operatorname{Im}(p_1) + \cdots + \operatorname{Im}(p_n))$ et $\dim(p_1) + \cdots + \dim(p_n)$, alors ces espaces vectoriels sont en somme directe.

Finalement, on a $\operatorname{Im}(p) = \operatorname{Im}(p_1) \oplus \operatorname{Im}(p_2) \oplus \cdots \oplus \operatorname{Im}(p_n)$.

Montrons maintenant que $\forall (i,j) \in [1,n]^2, i \neq j$ on a $p_i \circ p_j = 0$.

Soit $(i,j) \in [1,n]^2$ avec $i \neq j$ et soit $x \in E$. Alors $p_j(x) \in \text{Im}(p_j)$ donc $p_j(x) \in \text{Im}(p)$. On a donc $p(p_j(x)) = p_j(x)$, c'est à dire $\sum_{i=1}^n p_i \circ p_j(x) = p_j(x)$. En retranchant $p_j(x)$ de chaque côté, on obtient $\sum_{\substack{i=1 \ i \neq j}}^n p_i \circ p_j(x) = 0$.

Or $\forall i \in \{1, ..., n\}$, $p_i \circ p_j(x) \in \text{Im}(p_i)$. Puisque les $\text{Im}(p_i)$ sont en somme directe, on en déduit que $\forall i \in \{1, ..., n\}, i \neq j$ on a $p_i \circ p_j(x) = 0$.

Correction de l'exercice 15 : Supposons Ker(u) = Im(u). Alors clairement $u^2 = 0$ et dim(Ker(u)) + rg(u) = 2 dim(Keru) = dim(E)

Réciproquement, si $u^2 = 0$ alors $\text{Im}(u) \subset \text{Ker}(u)$ et l'égalité des dimensions fournit l'égalité Ker(u) = Im(u).

Supposons les deux premiers points vrais et montrons le troisième. Soit H un supplémentaire de $\operatorname{Ker}(u)$ dans E. L'application $u_{|H}: H \to \operatorname{Im}(u)$ est un isomorphisme d'après la démo du théorème du rang. Soit $u_{|H}^{-1}$ l'isomorphisme réciproque. Soit v l'application définie sur $\operatorname{Im}(u) \oplus H$ par $v(x+y) = u_{|H}^{-1}(x) + f(y)$.

On a alors $u_{|H}^{-1}(x) \in H$ et $u_{|H}(y) \in \text{Im}(u) = \text{Ker}(u)$, donc $u(v(x+y)) = u(u_{|H}^{-1}(x)) + 0 = x$.

d'autre part, $v(u(x+y)) = v(u(y)) = u_{H}^{-1}(u(y)) = y \text{ car } u(y) \in \text{Im}(u).$

Ainsi on a bien u(v(x+y)) + v(u(x+y)) = x + y donc $u \circ v + v \circ u = \mathrm{Id}_E$.

Réciproquement, supposons $u^2 = 0$ et il existe v tel que $u \circ v + v \circ u = \mathrm{Id}_E$. Soit $x \in \mathrm{Ker}(u)$. Alors x = u(v(x)) + v(u(x)) = u(v(x)) donc $x \in \mathrm{Im}(u)$. Réciproquement si $x \in \mathrm{Im}(u)$, alors x = u(y) donc $u(x) = u^2(y) = 0$ donc $x \in \mathrm{Ker}(u)$. On a bien $\mathrm{Ker}(u) = \mathrm{Im}(u)$.

Correction de l'exercice 16:

- 1) En multipliant par A dans l'égalité (i) on obtient $A^2A' = AA'A = A$ d'après l'égalité (ii). Ainsi $\underline{\operatorname{rg}(A) \leq \min(\operatorname{rg}(A^2), \operatorname{rg}(A')) \leq R$ éciproquement, on a $\operatorname{Im}(A^2) \subset \operatorname{Im}(A)$ donc $\underline{\operatorname{rg}(A^2) \leq \operatorname{rg}(A)}$. On en conclut que $\operatorname{rg}(A) = \operatorname{rg}(A^2)$ donc $\operatorname{rg}(a) = \operatorname{rg}(a^2)$.
- 2) a) Puisque $\operatorname{Im}(a^2) \subset \operatorname{Im}(a)$ et que $\operatorname{rg}(a^2) = \operatorname{rg}(a)$, on a égalité des dimensions $\operatorname{donc} \operatorname{Im}(a^2) = \operatorname{Im}(a)$. En appliquant le théorème du rang on en déduit immédiatement que $\operatorname{dim}(\operatorname{Ker}(a^2)) = \operatorname{dim}(\operatorname{Ker}(a))$ et comme $\operatorname{Ker}(a) \subset \operatorname{Ker}(a^2)$ on en déduit aussi que $\operatorname{Ker}(a) = \operatorname{Ker}(a^2)$.

Soit $x \in \text{Im}(a) \cap \text{Ker}(a)$. Alors il existe $x' \in \mathbb{R}^n$ tel que x = a(x'). De plus $0 = a(x) = a^2(x')$ donc $x' \in \text{Ker}(a^2)$. Puisque $\text{Ker}(a^2) = \text{Ker}(a)$ on a donc $x' \in \text{Ker}(a)$ donc x = a(x') = 0. Ainsi Im(a) et Ker(a) sont en somme directe, et puisque $\dim(\text{Im}(a) \oplus \text{Ker}(a)) = \dim(\text{Im}(a)) + \dim(\text{Ker}(a)) = n$ d'après le théorème du rang, donc par égalité des dimensions on a finalement :

$$\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$$

b) Soit $(e_1, ... e_r)$ une base de $\operatorname{Im}(a)$ et $(e_{r+1}, ..., e_n)$ une base de $\operatorname{Ker}(a)$. D'après la question précédente, $\mathcal{B} = (e_1, ..., e_n)$ est alors une base de \mathbb{R}^n et dans cette base on a : $a(e_1), ..., a(e_r) \in \operatorname{Im}(a)$ et $a(e_{r+1}) = a(e_{r+2}) = \cdots = a(e_n) = 0$.

La matrice représentative de a dans la base $(e_1, ..., e_n)$ est donc de la forme $\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$ où B est une matrice carrée de taille r. Cette matrice par bloc a le même rang que B car les autres lignes sont des 0, et comme le rang de cette matrice est $\operatorname{rg}(a) = r$ on a finalement $\operatorname{rg}(B) = r$, donc B est inversible.

Si P est la matrice de passage de la base canonique de \mathbb{R}^n à la base \mathcal{B} , alors on a d'après la formule de changement de base :

$$A = P \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$$

c) Soit B' la matrice de $\mathcal{M}_r(\mathbb{R})$ inverse de B. En posant $A' = P \begin{pmatrix} B' & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$ on obtient en faisant le produit par blocs :

$$AA' = P \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} B' & 0 \\ 0 & 0 \end{pmatrix} P^{-1} = P \begin{pmatrix} BB' & 0 \\ 0 & 0 \end{pmatrix} P^{-1} = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$$

et de même :

$$A'A = P\begin{pmatrix} B' & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}P^{-1} = P\begin{pmatrix} B'B & 0 \\ 0 & 0 \end{pmatrix}P^{-1} = P\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}P^{-1}$$

donc AA' = A'A.

De même, on calcule :

$$AA'A = P\begin{pmatrix} BB'B & 0\\ 0 & 0 \end{pmatrix}P^{-1} = P\begin{pmatrix} B & 0\\ 0 & 0 \end{pmatrix}P^{-1} = A$$

et

$$A'AA' = P\begin{pmatrix} B'BB' & 0 \\ 0 & 0 \end{pmatrix} P^{-1} = P\begin{pmatrix} B' & 0 \\ 0 & 0 \end{pmatrix} P^{-1} = A'$$

La matrice A' est donc bien un pseudo-inverse de A

- 3) Soit $x \in \text{Ker}(a)$. On a a(a'(x)) = a'(a(x)) = a'(0) = 0 donc $a'(x) \in \text{Ker}(a)$. Ainsi Ker(a) est stable par a'
- 4) Soit $y \in \text{Im}(a)$. Il existe $x \in \mathbb{R}^n$ tel que y = a(x), donc $a'(y) = a'(a(x)) = a(a'(x)) \in \text{Im}(a)$ donc Im(a) est stable par a'.

En reprenant la base \mathcal{B} de la question 2)b) la matrice représentative de a' dans cette base est de la forme $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$ avec D une matrice carré de taille r. La formule de changement de base donne donc bien $A' = P \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$.

5) Comme a' est un pseudo inverse de a on a $aa' = aa'aa' = (aa')^2$ donc aa' est un projecteur. Soit x un vecteur de Ker(aa'). Puisque aa' = a'a on a $x \in \text{Ker}(a'a)$ donc a(x) = a(a'(a(x))) = a(0) = 0. Ainsi $x \in \text{Ker}(a)$. Réciproquement si $x \in \text{Ker}(a)$ on a 0 = a'(a(x)) = a(a'(x)) donc $x \in \text{Ker}(aa')$. On en conclut que Ker(aa') = Ker(a).

De même, si $y \in \text{Im}(aa')$ alors $y \in \text{Im}(a)$, et si $y \in \text{Im}(a)$ alors $y \in \text{Im}(aa'a)$ donc $y \in \text{Im}(aa')$. Ainsi, $\boxed{\text{Im}(aa') = \text{Im}(a)}$. Enfin la matrice $P^{-1}(AA')P$ représente le projecteur aa' dans la base \mathcal{B} . Or comme Im(aa') = Im(a) et que Ker(aa') = Ker(a) on a $\mathbb{R}^n = \text{Im}(aa') \oplus \text{Ker}(aa')$. Dans cette base, la matrice représentative de aa' est $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ donc :

$$P^{-1}(AA')P = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

6) Puisque on a $P^{-1}(AA')P = \begin{pmatrix} BD & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ selon les questions précédentes, alors $BD = I_r$ donc D est nécessairement l'inverse de B. L'inverse d'une matrice étant unique, cela suffit à prouver l'unicité du pseudo-inverse si il existe.

Correction de l'exercice 17:

1) On a Im(u) = F + G puisque par définition $F + G = \{x + y, (x, y) \in F \times G\}$. De plus, $\text{Ker}(u) = \{(x, y) \in F \times G; x + y = 0\} = \{(x, y) \in F \times G; y = -x\}$. Or si $(x, y) \in F \times G$ et que y = -x, alors $y \in F$ donc x et y sont dans $F \cap G$. Réciproquement, si x et y sont dans $F \times G$, il suffit d'avoir y = -x pour que (x, y) soit dans Ker(u). Ainsi :

$$Ker(u) = \{(x, y) \in (F \cap G)^2 : y = -x\} = \{(x, -x) : x \in F \cap G\}$$

donc $\operatorname{Ker}(u)$ est isomorphe à $F \cap G$ via l'application $F \cap G \to F \times G, x \mapsto (x, -x)$. D'après le théorème du rang on a donc :

$$\dim(\operatorname{Ker}(u)) + \operatorname{rg}(u) = \dim(F \times G)$$

donc

$$\dim(F \cap G) + \dim(F + G) = \dim(F \times G)$$

c'est à dire avec le résultat admis :

$$d_{F \cap G} + d_{F+G} = d_F + d_G$$

2) En élevant l'égalité précédente au carré on obtient :

$$d_{F+G}^2 + d_{F\cap G}^2 + 2d_{F+G}d_{F\cap G} = d_F^2 + d_G^2 + 2d_Fd_G$$

d'où

$$\begin{split} d_{F+G}^2 + d_{F\cap G}^2 - d_F^2 - d_G^2 &= 2(d_F d_G - d_{F+G} d_{F\cap G}) \\ &= 2(d_F d_G - (d_F + d_G - d_{F\cap G}) d_{F\cap G}) \\ &= 2(d_F d_G - d_F d_{F\cap G} - d_G d_{F\cap G} + d_{F\cap G}^2) \\ &= 2(d_F - d_{F\cap G})(d_G - d_{F\cap G}) \end{split}$$

3) Comme $F \cap G$ est un sous espace vectoriel de F (et de G) on a $d_{F \cap G} \leq d_F$ et $d_{F \cap G} \leq d_G$, donc $2(d_G - d_{F \cap G})(d_F - d_{F \cap G} \geq 0$ d'où l'inégalité :

$$d_{F+G}^2 + d_{F\cap G}^2 \geqslant d_F^2 + d_G^2$$

Cas d'égalité:

$$d_{F+G}^2 + d_{F\cap G}^2 = d_F^2 + d_G^2 \text{si et seulement si } (d_F - d_{F\cap G})(d_G - d_{F\cap G}) = 0$$
 si et seulement si $d_F = d_{F\cap G}$ ou $d_G = d_{F\cap G}$ si et seulement si $F = F \cap G$ ou $G = F \cap G$ (inclusions et égalité des dimensions) si et seulement si $F \subset G$ ou $G \subset F$

4) Suivant l'indication on pose $f(x) = (x + d_G - d_{F \cap G})^{\alpha} + d_{F \cap G}^{\alpha} - x^{\alpha} - d_G^{\alpha}$. f est dérivable sur $[0; +\infty[$ comme composée et somme de fonctions dérivables (car $\forall x \in [0, +\infty[$ on a bien $x \geq 0$ et $x + d_G - d_{F \cap G} \geq 0$) et :

$$\forall x > 0$$
, $f'(x) = \alpha (x + d_G - d_{F \cap G})^{\alpha - 1} - \alpha x^{\alpha - 1}$

Pour tout $x \ge 0$ on a :

$$f'(x) \ge 0 \iff (x + d_G - d_{F \cap G})^{\alpha - 1} \ge x^{\alpha - 1}$$
$$\iff x + d_G - d_{F \cap G} \ge x$$
$$\iff d_G - d_{F \cap G} \ge 0$$

donc $f' \ge 0$ et f est croissante sur $[0, +\infty[$. En particulier on a $f(d_F) \ge f(d_{F \cap G})$ ce qui donne :

$$(d_F + d_G - d_{F \cap G})^{\alpha} + d_{F \cap G}^{\alpha} - d_F^{\alpha} - d_G^{\alpha} \ge 0$$

c'est à dire:

$$d_{F+G}^{\alpha} + d_{F\cap G}^{\alpha} - d_F^{\alpha} - d_G^{\alpha} \ge 0$$

d'où le résultat voulu.

Cas d'égalité:

 $d_{F+G}^{\alpha} + d_{F\cap G}^{\alpha} - d_F^{\alpha} - d_G^{\alpha} = 0$ si et seulement si f est constante sur $[d_{F\cap G}, d_F]$

si et seulement si $F\subset G$ ou $G\subset F.$

si et seulement si f' s'annule sur $[d_{F\cap G}, d_F]$ si et seulement si $d_G = d_{F\cap G}$ (la dérivée s'annule) ou $d_F = d_{F\cap G}$ (l'intervalle est réduit à un po

